EN EL CENTRO DE LA SEGUNDA IMAGEN HAY UNA VIRGEN Y...
Creado el: 15 de diciembre de 2025
Respondido usando GPT-5.2 Thinking por Chat01
Creado el: 15 de diciembre de 2025
Respondido usando GPT-5.2 Thinking por Chat01
EN EL CENTRO DE LA SEGUNDA IMAGEN HAY UNA VIRGEN Y ENCIMA UNA CORONA CON UNA PEQUEÑA CRUZ ENCIMA, QUIERO QUE PONGAS ESTOS DOS DETALLES EN LA PRIMERA IMAGEN , QUE LA REFINES Y MARQUES MAS SUS LINEAS, EL RESTO DEJALO TAL CUAL ESTA
pythonfrom PIL import Image, ImageEnhance, ImageFilter import numpy as np, os, matplotlib.pyplot as plt, math, cv2, PIL img1_path="/mnt/data/Captura de pantalla 2025-12-14 143524.png" img2_path="/mnt/data/Captura de pantalla 2025-12-07 202059vr.png" img1=Image.open(img1_path).convert("RGBA") img2=Image.open(img2_path).convert("RGBA") img1.size, img2.size ((676, 1104), (930, 1658))
pythonimport matplotlib.pyplot as plt plt.figure(figsize=(6,10)) plt.imshow(img1) plt.axis('off') plt.show()
pythonplt.figure(figsize=(6,10)) plt.imshow(img2) plt.axis('off') plt.show()
pythonimport numpy as np def show_crop(im, box, figsize=(5,5)): crop=im.crop(box) plt.figure(figsize=figsize) plt.imshow(crop) plt.axis('off') plt.show() return crop # rough box for medallion in img2 box_med=(250, 650, 690, 1240) # (left, top, right, bottom) crop_med = show_crop(img2, box_med, figsize=(5,7))
python# show potential oval area box1=(200, 360, 480, 690) crop1 = show_crop(img1, box1, figsize=(4,5))
pythonbox_oval=(235, 420, 445, 670) crop_oval = show_crop(img1, box_oval, figsize=(4,5))
pythonbox_oval=(225, 415, 455, 710) crop_oval = show_crop(img1, box_oval, figsize=(4,6))
pythonimport numpy as np, cv2, matplotlib.pyplot as plt crop_med_np = np.array(crop_med.convert("RGB")) h,w = crop_med_np.shape[:2] h,w (590, 440)
pythonplt.figure(figsize=(6,8)) plt.imshow(crop_med_np) plt.axis('on') plt.show()
pythonimport numpy as np, cv2 img_gc = cv2.cvtColor(crop_med_np, cv2.COLOR_RGB2BGR) mask = np.zeros(img_gc.shape[:2], np.uint8) bgdModel = np.zeros((1,65), np.float64) fgdModel = np.zeros((1,65), np.float64) rect = (115, 195, 215, 360) # x,y,w,h cv2.grabCut(img_gc, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT) mask2 = np.where((mask==2)|(mask==0), 0, 1).astype('uint8') # refine with morphological operations kernel = np.ones((3,3),np.uint8) mask2 = cv2.morphologyEx(mask2, cv2.MORPH_OPEN, kernel, iterations=1) mask2 = cv2.morphologyEx(mask2, cv2.MORPH_DILATE, kernel, iterations=1) # create rgba rgba = np.dstack([crop_med_np, mask2*255]).astype(np.uint8) statue = Image.fromarray(rgba, 'RGBA') # crop to bounding box of mask coords = np.argwhere(mask2==1) y0,x0 = coords.min(axis=0) y1,x1 = coords.max(axis=0)+1 statue_cropped = statue.crop((x0,y0,x1,y1)) statue_cropped.size (213, 352)
pythonplt.figure(figsize=(4,6)) plt.imshow(statue_cropped) plt.axis('off') plt.show()
pythoncrown_crop = crop_med.crop((60, 0, 380, 210)) plt.figure(figsize=(6,4)) plt.imshow(crown_crop) plt.axis('off') plt.show()
pythoncrown_np = np.array(crown_crop.convert("RGB")) img_c = cv2.cvtColor(crown_np, cv2.COLOR_RGB2BGR) mask = np.zeros(img_c.shape[:2], np.uint8) bgdModel = np.zeros((1,65), np.float64) fgdModel = np.zeros((1,65), np.float64) rect = (15, 20, crown_np.shape[1]-30, crown_np.shape[0]-40) cv2.grabCut(img_c, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT) mask2 = np.where((mask==2)|(mask==0), 0, 1).astype('uint8') # refine: remove small background by keeping largest component num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(mask2, connectivity=8) # ignore background label 0 areas = stats[1:, cv2.CC_STAT_AREA] if len(areas)>0: largest = 1 + areas.argmax() mask2 = (labels==largest).astype('uint8') mask2 = cv2.morphologyEx(mask2, cv2.MORPH_CLOSE, np.ones((5,5),np.uint8), iterations=1) rgba = np.dstack([crown_np, mask2*255]).astype(np.uint8) crown_rgba = Image.fromarray(rgba, 'RGBA') # crop to bbox coords = np.argwhere(mask2==1) y0,x0 = coords.min(axis=0) y1,x1 = coords.max(axis=0)+1 crown_ex = crown_rgba.crop((x0,y0,x1,y1)) crown_ex.size (258, 146)
pythonplt.figure(figsize=(6,3)) plt.imshow(crown_ex) plt.axis('off') plt.show()
python# visualize full img1 with coordinate grid for approximate import matplotlib.pyplot as plt fig = plt.figure(figsize=(6,10)) ax = plt.gca() ax.imshow(img1) ax.set_xlim(150, 530) ax.set_ylim(760, 300) # zoom on center top area with oval ax.axis('on') plt.show()
pythonpix = img1.getpixel((265, 600)) pix (235, 203, 90, 255)
pythonfrom PIL import ImageDraw # create crown with cross crown = crown_ex.copy() cw,ch = crown.size cross_w = int(cw*0.09) # width of cross stem cross_h = int(ch*0.35) arm_w = int(cw*0.22) arm_h = int(ch*0.08) # create transparent layer for cross cross_layer = Image.new("RGBA", (cw, ch), (0,0,0,0)) draw = ImageDraw.Draw(cross_layer) # position at top center cx = cw//2 top_y = int(ch*0.02) # vertical stem rectangle stem_x0 = cx - cross_w//2 stem_x1 = cx + cross_w//2 stem_y0 = top_y stem_y1 = top_y + cross_h # horizontal arms arm_y0 = top_y + int(cross_h*0.35) - arm_h//2 arm_y1 = arm_y0 + arm_h arm_x0 = cx - arm_w//2 arm_x
pythonextra = int(ch*0.35) new_canvas = Image.new("RGBA", (cw, ch+extra), (0,0,0,0)) new_canvas.paste(crown, (0, extra), crown) draw = ImageDraw.Draw(new_canvas) # cross dimensions relative to cw cross_h = int(extra*0.9) cross_w = int(cw*0.06) arm_w = int(cw*0.18) arm_h = int(extra*0.18) cx = cw//2 top_y = int(extra*0.05) stem_x0 = cx - cross_w//2 stem_x1 = cx + cross_w//2 stem_y0 = top_y stem_y1 = top_y + cross_h arm_y0 = top_y + int(cross_h*0.40) - arm_h//2 arm_y1 = arm_y0 + arm_h arm_x0 = cx - arm_w//2 arm_x1 = cx + arm_w//2 gold = (240, 210, 130, 255) shadow = (120, 90, 40, 140) off=2 # shadow draw.rectangle([stem_x0+off, stem_y0+off, stem_x1+off, stem_y1+off], fill=shadow) draw.rectangle([arm_x0+off, arm_y0+off, arm_x1+off, arm_y1+off], fill=shadow) # main draw.rectangle([stem_x0, stem_y0, stem_x1, stem_y1], fill=gold) draw.rectangle([arm_x0, arm_y0, arm_x1, arm_y1], fill=gold) crown_with_cross2=new_canvas plt.figure(figsize=(6,4)) plt.imshow(crown_with_cross2) plt.axis('off') plt.show() crown_with_cross2.size (258, 197)
pythonfrom PIL import ImageChops base = img1.copy() # Fill inner ellipse with sampled gold to remove old silhouette (but keep border) inner_bbox = (250, 520, 428, 716) gold_color = base.getpixel((265, 600)) fill_layer = Image.new("RGBA", base.size, (0,0,0,0)) draw = ImageDraw.Draw(fill_layer) draw.ellipse(inner_bbox, fill=gold_color) base = Image.alpha_composite(base, fill_layer) # Scale and paste statue ellipse_w = inner_bbox[2]-inner_bbox[0] ellipse_h = inner_bbox[3]-inner_bbox[1] target_w = int(ellipse_w*0.70) target_h = int(ellipse_h*0.92) s_w,s_h = statue_cropped.size scale = min(target_w/s_w, target_h/s_h) new_size = (max(1,int(s_w*scale)), max(1,int(s_h*scale))) statue_resized = statue_cropped.resize(new_size, resample=Image.Resampling.LANCZOS) # paste centered in ellipse cx = (inner_bbox[0]+inner_bbox[2])//2 cy = (inner_bbox[1]+inner_bbox[3])//2 + int(ellipse_h*0.05) # slightly down pos = (cx - new_size[0]//2, cy - new_size[1]//2) base.paste(statue_resized, pos, statue_resized) # Add cross above existing gold crown cross_layer = Image.new("RGBA", base.size, (0,0,0,0)) draw = ImageDraw.Draw(cross_layer) # cross dimensions relative to image cross_h = 45 cross_w = 14 arm_w = 40 arm_h = 12 cx = base.size[0]//2 # 338 top_y = 420 stem = [cx - cross_w//2, top_y, cx + cross_w//2, top_y + cross_h] arm_y = top_y + int(cross_h*0.35) arm = [cx - arm_w//2, arm_y - arm_h//2, cx + arm_w//2, arm_y + arm_h//2] gold = (240, 210, 130, 255) shadow = (90, 60, 20, 120) off=2 draw.rectangle([stem[0]+off, stem[1]+off, stem[2]+off, stem[3]+off], fill=shadow) draw.rectangle([arm[0]+off, arm[1]+off, arm[2]+off, arm[3]+off], fill=shadow) draw.rectangle(stem, fill=gold) draw.rectangle(arm, fill=gold) base = Image.alpha_composite(base, cross_layer) # Refine and mark lines: unsharp mask and slight contrast enhanced = base.filter(ImageFilter.UnsharpMask(radius=2, percent=180, threshold=3)) enhanced = ImageEnhance.Contrast(enhanced).enhance(1.08) enhanced = ImageEnhance.Sharpness(enhanced).enhance(1.15) # show result plt.figure(figsize=(6,10)) plt.imshow(enhanced) plt.axis('off') plt.show()
pythondef add_drop_shadow(rgba_img, offset=(3,3), shadow_color=(0,0,0,140), blur_radius=4): # rgba_img: PIL RGBA w,h = rgba_img.size shadow = Image.new("RGBA", (w+abs(offset[0])*2, h+abs(offset[1])*2), (0,0,0,0)) # Create shadow from alpha alpha = rgba_img.split()[-1] shadow_alpha = alpha.copy().filter(ImageFilter.GaussianBlur(blur_radius)) shadow_layer = Image.new("RGBA", rgba_img.size, shadow_color) shadow_layer.putalpha(shadow_alpha) sx = abs(offset[0]) + max(offset[0],0) sy = abs(offset[1]) + max(offset[1],0) shadow.paste(shadow_layer, (sx, sy), shadow_layer) # Paste original
pythonout_path="/mnt/data/estandarte_editado.png" enhanced2.save(out_path) out_path, os.path.getsize(out_path) ('/mnt/data/estandarte_editado.png', 1107155)
Listo — añadí la Virgen en el óvalo central y una cruz pequeña sobre la corona, y además reforcé nitidez/relieve para marcar más las líneas, dejando el resto igual.