Perfect — those names tell me exactly what you hav...
Created on: February 22, 2026
Answered using GPT-5.2 Thinking by Chat01
Created on: February 22, 2026
Answered using GPT-5.2 Thinking by Chat01
Perfect — those names tell me exactly what you have available. Here’s the clean “separate fix” using your actual stat columns, and it stays display-only (won’t touch totals/picks unless you choose to).
What we’re fixing
Your “Analytical Hold (Newton-Keller)” is coming from raw SPW, where:
• SPW = (1stSrv Pts Won + 2ndSrv Pts Won) / (1stSrv Pts Att + 2ndSrv Pts Att)
If that ratio is inflated (small sample / bad parsing), the SPW→Hold mapping can print crazy numbers like 90%+.
So we do:
1. Compute SPW from your serve points
2. Shrink SPW toward a baseline when serve-point sample is small
3. Cap SPW to a realistic range before calling getGameWinProb()
4. Use that only for the Analytical Hold display line
⸻
Step-by-step fix
Step 1 — Add these helpers (once)
Paste anywhere above MATCH_PREVIEW:
function clamp(x, lo, hi){
x = Number(x);
if (!Number.isFinite(x)) return lo;
return Math.min(hi, Math.max(lo, x));
}
function safeDiv(a, b){
a = Number(a); b = Number(b);
if (!Number.isFinite(a) || !Number.isFinite(b) || b <= 0) return NaN;
return a / b;
}
/**
var spwRaw = safeDiv(won, att);
// Baseline SPW (simple + stable; you can tune)
var t = String(tourLabel || "").toUpperCase();
var baseline = (t.indexOf("WTA") > -1) ? 0.615 : 0.635;
if (!Number.isFinite(spwRaw)) spwRaw = baseline;
// Shrinkage weight based on serve points sample size.
// 0..1; with K=250, 250 serve pts = 50% trust, 500 = 67% trust, 1000 = 80% trust
var K = 250;
var w = (Number.isFinite(att) && att > 0) ? (att / (att + K)) : 0.35;
// Extra shrink if sample is tiny
if (att < 120) w *= 0.65; // super noisy
else if (att < 220) w *= 0.80; // still noisy
var spwShrunk = baseline + w * (spwRaw - baseline);
// Realistic cap before NK mapping so hold% can’t go insane
var capLo = 0.52;
var capHi = (t.indexOf("WTA") > -1) ? 0.68 : 0.70;
return clamp(spwShrunk, capLo, capHi);
}
⸻
Step 2 — Use it ONLY where you print “Analytical Hold”
Find the block that prints:
Analytical Hold: ... (Newton-Keller)
Right now you’ll have something like:
var nkHoldA = getGameWinProb(statsA.spw || 0.62);
var nkHoldB = getGameWinProb(statsB.spw || 0.62);
Replace with this (and only here):
// Build display-only SPW from serve points (uses your column names)
var spwA_disp = spwForHoldDisplayFromServePts(
statsA.srv1Won, statsA.srv1Att,
statsA.srv2Won, statsA.srv2Att,
tourLabel
);
var spwB_disp = spwForHoldDisplayFromServePts(
statsB.srv1Won, statsB.srv1Att,
statsB.srv2Won, statsB.srv2Att,
tourLabel
);
// Newton-Keller hold for DISPLAY ONLY
var nkHoldA = getGameWinProb(spwA_disp);
var nkHoldB = getGameWinProb(spwB_disp);
Important: your field names in code
Your sheet columns are named like “1stSrv Pts Won”, but in code you’ll have variables/properties. They usually map to something like:
• srv1Won, srv1Att, srv2Won, srv2Att
If your script uses different property names, search for where SPW is computed and copy the exact identifiers it uses for those four numbers.
⸻
Why this works
• If someone has only ~150 serve points in your sample window, SPW can look like 0.74 just from noise.
• Shrinkage pulls that toward baseline so the display doesn’t hallucinate 90% holds.
• The cap guarantees the NK display can’t output insane holds even if SPW is still high.
⸻
Optional (recommended): add a warning when capped
Right after spwA_disp is computed:
if (Number.isFinite(statsA.srv1Att + statsA.srv2Att) && (statsA.srv1Att + statsA.srv2Att) < 220) {
// append a small note like "(small sample)" to the Analytical Hold line
}
⸻
I update my script then send it as a downloadable text link
After updating check the script for syntax and accidentally mojibakes sometimes the emojis u gotta write code so it prints as emoji I know there’s 1 of those all the rest of emojis are working
pythonimport re, pathlib, textwrap, os, json, math, sys, pandas as pd path="/mnt/data/4.0fix.txt" text=pathlib.Path(path).read_text(encoding="utf-8", errors="replace") len(text), text[:2000] (559993, '/**\n * PATCH NOTE (2026-02-19):\n * - Restored getTotalsPick() to v3.0 logic (removed MIN_BET_PROB gate that blocked many OVERS).\n * - Fixed classifyPlayer() Big Server ace threshold from 0.5 to 0.05 (label-only).\n * PATCH NOTE (2026-02-21):\n * - Unified totals + winner holds (removed totals sandbox; single reality for preview).\n * - Dampened BT-SBM tier hold shift from 3.5% -> 2.0% per tier gap (applies to ALL engines).\n * - Synchronized Markov/Dist totals to use the same sim holds as Monte Carlo.\n * - Standardized set-to-set momentum to 0.03 in BOTH MC + Markov engines.\n\n */\n\n// ========================== TENNIS MODEL ==========================\n// Paste this entire file into Google Apps Script (Extensions > Apps Script).\n// \n// CORRECT MATCH_PICK FORMULA (10 args):\n// =MATCH_PICK(\'Match Inputs\'!$A$2, \'Match Inputs\'!$A$11, "", "", "AUTO", \'Match Inputs\'!$B$36, \'Match Inputs\'!$B$37, NOW(), \'Match Inputs\'!$A$3:$X$18, \'Summary & Prediction\'!$A$1:$Z$200)\n// (If oddsA/oddsB are blank or N/A, odds are auto-read from \'Summary & Prediction\'!B42/B43.)\n//\n// CORRECT MATCH_PREVIEW FORMULA (11 args):\n// =MATCH_PREVIEW(\'Match Inputs\'!$A$2, \'Match Inputs\'!$A$11, "", "", "AUTO", NOW(), \'Match Inputs\'!$A$3:$X$18, \'Summary & Prediction\'!$A$1:$Z$200, \'Summary & Prediction\'!$B$42:$B$43, \'Match Inputs\'!$B$36, \'Match Inputs\'!$B$37)\n// (If oddsA/oddsB are blank or N/A, odds are auto-read from \'Summary & Prediction\'!B42/B43.)\n// ==================================================================\n\n\n// FIXED (2026-02-15): Replaced String.includes() with indexOf() for ES5 compatibility; normalized a few non-ASCII glyphs to ASCII.\n// @OnlyCurrentDoc\n// eslint-disable new-cap\n\n/* Polyfills removed (V8 runtime assumed). */\n\n// ================= GLOBAL SIM FLAGS (used by sim / prop helpers) =================\nvar _simIsWtaStyle = false;\nvar _tankMultiplier = 1.0;\n// =============================================================================\n\n\n// ================= FUZZY MOMENTUM ACTIVATIO')
pythonimport re, pathlib m=re.search(r'\nfunction\s+MATCH_PREVIEW\s*\(', text) m.start() if m else None, text[m.start()-200:m.start()+200] if m else "" (441956, ' else if (p >= 0.30) tag = "Value " + role;\n else tag = "Longshot " + role;\n\n // 4. Trap Awareness\n var trapTag = trap ? " [TRAP AWARE]" : "";\n\n return tag + evText + trapTag;\n}\n\n\n\nfunction MATCH_PREVIEW(nameA, nameB, oddsA, oddsB, serverFirst, refreshTrigger, matchInputsRange, summaryRange, oddsRange, marketTotalInput, marketFormatInput) {\n // Guard: ensures any stray \'prob\' ')
pythonidx=text.find("Analytical Hold") idx, text[idx-200:idx+300] if idx!=-1 else None (490395, 'ixed(1) + "%" + (hasElo ? " | Elo " + (pElo*100).toFixed(1) + "%" : ""));\n var nkHoldA = getGameWinProb(statsA.spw || 0.62);\n var nkHoldB = getGameWinProb(statsB.spw || 0.62);\n lines.push("- Analytical Hold: " + A + " " + (nkHoldA*100).toFixed(1) + "% | " + B + " " + (nkHoldB*100).toFixed(1) + "% (Newton-Keller)");\n // H2H display removed (small-sample noise)\n lines.push("");\n\n // ======== FINAL PICKS ========\n lines.push("########################################");\n line')
pythonimport re matches=list(re.finditer(r'srv1Won', text)) len(matches), matches[0].start() if matches else None (8, 212381)
pythonpos=matches[0].start() text[pos-200:pos+400] '||\n (Number.isFinite(sgWon) && sgWon >= 0);\n if (hasValidData) matches++;\n }\n\n // Accumulators for serve/return stats\n var sgWonSum = 0, sgPlayedSum = 0;\n var srv1Won = 0, srv1Att = 0;\n var srv2Won = 0, srv2Att = 0;\n var ret1Won = 0, ret1Att = 0;\n var ret2Won = 0, ret2Att = 0;\n var bpSavedWon = 0, bpSavedAtt = 0;\n var bpConvWon = 0, bpConvAtt = 0; // FIX Issue 37: Track BP conversion attempts\n var acesWon = 0, dfsCount = 0;\n // dominanceRatio calculated from existing stats, no separate tracking needed\n\n // Sum up data across row'
pythonimport re m=re.search(r'srv1Won\s*:', text) m.start() if m else None, text[m.start()-100:m.start()+200] if m else "" (None, '')
python# display a segment around first occurrence to locate function boundaries start=pos-1000 end=pos+2500 segment=text[start:end] segment[:2000] "g(side).toUpperCase() === 'B') ? ROWSBSTART : ROWSASTART;\n var endRow = startRow + MAXLAST5ROWS - 1;\n \n // Count matches - now checks for ANY valid data in key columns, not just SG_WON > 0\n // This fixes Issue 3: Valid rows with 0 Aces/DFs should not be skipped\n var matches = 0;\n for (var i = startRow; i <= endRow; i++){\n var sgWon = getCellNumber(i, COLS.SG_WON);\n var sgPlayed = getCellNumber(i, COLS.SG_PLAYED);\n var srv1Att = getCellNumber(i, COLS.SRV1_ATT);\n // Count as valid match if ANY of: sgPlayed > 0, srv1Att > 0, or sgWon >= 0 (not null)\n // This ensures we don't skip rows with legitimate 0-value data\n var hasValidData = (Number.isFinite(sgPlayed) && sgPlayed > 0) ||\n (Number.isFinite(srv1Att) && srv1Att > 0) ||\n (Number.isFinite(sgWon) && sgWon >= 0);\n if (hasValidData) matches++;\n }\n\n // Accumulators for serve/return stats\n var sgWonSum = 0, sgPlayedSum = 0;\n var srv1Won = 0, srv1Att = 0;\n var srv2Won = 0, srv2Att = 0;\n var ret1Won = 0, ret1Att = 0;\n var ret2Won = 0, ret2Att = 0;\n var bpSavedWon = 0, bpSavedAtt = 0;\n var bpConvWon = 0, bpConvAtt = 0; // FIX Issue 37: Track BP conversion attempts\n var acesWon = 0, dfsCount = 0;\n // dominanceRatio calculated from existing stats, no separate tracking needed\n\n // Sum up data across rows\n for (var row = startRow; row <= endRow; row++){\n sgWonSum += safeNumber(getCellNumber(row, COLS.SG_WON), 0);\n sgPlayedSum += safeNumber(getCellNumber(row, COLS.SG_PLAYED), 0);\n srv1Won += safeNumber(getCellNumber(row, COLS.SRV1_WON), 0);\n srv1Att += safeNumber(getCellNumber(row, COLS.SRV1_ATT), 0);\n srv2Won += safeNumber(getCellNumber(row, COLS.SRV2_WON), 0);\n srv2Att += safeNumber(getCellNumber(row, COLS.SRV2_ATT), 0);\n ret1Won += safeNumber(getCellNumber(row, COLS.RET1_WON), 0);\n ret1Att += safeNumber(ge"
pythonsegment[2000:4000] "tCellNumber(row, COLS.RET1_ATT), 0);\n ret2Won += safeNumber(getCellNumber(row, COLS.RET2_WON), 0);\n ret2Att += safeNumber(getCellNumber(row, COLS.RET2_ATT), 0);\n bpSavedWon += safeNumber(getCellNumber(row, COLS.BP_SAVED_WON), 0);\n bpSavedAtt += safeNumber(getCellNumber(row, COLS.BP_SAVED_ATT), 0);\n bpConvWon += safeNumber(getCellNumber(row, COLS.BP_CONV_WON), 0);\n acesWon += safeNumber(getCellNumber(row, COLS.ACES), 0);\n dfsCount += safeNumber(getCellNumber(row, COLS.DFS), 0);\n \n // FIX Issue 38: Dominance ratio column removed from sheet\n // Calculate from Total Pts Won if needed (but we'll derive it at the end)\n }\n \n // FIX Issue 37: Estimate BP conversion attempts from opponent's service games\n // BP conversion attempts ~ opponent's break points faced (their BP_SAVED_ATT)\n // Since we don't have opponent data here, estimate from return games played\n // Typical BP opportunity rate: ~30% of return games have a break point\n var estReturnGamesPlayed = sgPlayedSum;\n var estBPOpportunityRate = _tourDefaults(tourCode(), surfaceAlias()).bpOpp;\n bpConvAtt = Math.max(bpConvWon, Math.round(estReturnGamesPlayed * estBPOpportunityRate));\n\n // Derived totals\n var totalSrvWon = srv1Won + srv2Won;\n var totalSrvAtt = srv1Att + srv2Att;\n var totalRetWon = ret1Won + ret2Won;\n var totalRetAtt = ret1Att + ret2Att;\n\n // Raw rates\n var srv1Rate = safeDivide(srv1Won, s"
pythonsegment[4000:6000] ''
pythonstart=m.start() seg=text[start:start+12000] # find return { in this segment ret=re.search(r'return\s*\{', seg) ret.start() if ret else None 8506
pythonseg[8400:9000] "edSum < 5){\n quality = 'THIN';\n warning = 'Few service games (' + sgPlayedSum + ')';\n }\n\n return {\n side: (String(side).toUpperCase() === 'B') ? 'B' : 'A',\n spw: spwVal,\n srv1Rate: srv1Rate,\n srv2Rate: srv2Rate,\n attempts: totalSrvAtt,\n matches: matches,\n sgWinRate: sgWinRate,\n sgPlayed: sgPlayedSum,\n retRate: retRate,\n retGameWinRate: retGameWinRate,\n bpSaveRate: bpSaveRate,\n // FIX Issue 37: Use actual BP conversion data instead of deriving from return rate\n bpConvRate: bpConvAtt > 0 ? safeDivide(bpConvWon, bpCo"
pythonseg[9000:9800] 'nvAtt, _tourDefaults(tourCode(), surfaceAlias()).breakRate) : \n (retRate ? Math.max(0.20, Math.min(0.70, retRate + 0.05)) : _tourDefaults(tourCode(), surfaceAlias()).breakRate),\n bpConvWon: bpConvWon,\n bpConvAtt: bpConvAtt,\n aceRate: aceRate,\n dfRate: dfRate,\n bpFacedRate: bpFacedRate,\n // Unadjusted per-point rates (no surface multipliers applied).\n // Surface multipliers (surfMults.ace, surfMults.df) are applied downstream\n // in FINAL_BET_SUMMARY projection formulas - not here.\n rawAceRate: aceRate,\n rawDfRate: dfRate,\n rawBpFacedRate: bpFacedRate,\n // NEW: Expected points per service game derived from last 5 matches. When\n // there are no serve attempts, fall back to a typical 5.5 points per game.\n '
pythonseg[9800:10600] "avgPointsPerServiceGame: (totalSrvAtt > 0 ? (totalSrvWon + totalSrvAtt) / sgPlayedSum : 5.5),\n // NEW: The total number of serve points across the last 5 matches (used for\n // baseline projections and narrative context).\n totalServePointsLast5: totalSrvAtt,\n dominanceRatio: dominanceRatio, // FIX Issue 38: Include dominance ratio in stats\n quality: quality,\n warning: warning,\n totalSrvWon: totalSrvWon,\n totalSrvAtt: totalSrvAtt,\n totalRetWon: totalRetWon,\n totalRetAtt: totalRetAtt,\n ageFactor: ageFactor,\n surface: surfaceAlias(),\n hand: (function() {\n try {\n var mi = SpreadsheetApp.getActive().getSheetByName('Match Inputs');\n if (!mi) return 'R';\n var hCol = (String(side).toUpperCase() === '"
pythonseg[10600:11400] "A') ? 2 : 3;\n var hv = String(mi.getRange(24, hCol).getValue() || '').toUpperCase().trim();\n return (hv === 'L' || hv === 'LEFT' || hv.indexOf('LEFT') >= 0) ? 'L' : 'R';\n } catch(e) { return 'R'; }\n })(),\n status: (function() {\n try {\n var fat = getEnhancedFatigue(String(side).toUpperCase() === 'B' ? 'B' : 'A');\n if (fat.fatigueLabel === 'EXHAUSTED') return 'VERY_TIRED';\n if (fat.fatigueLabel === 'TIRED') return 'TIRED';\n return 'FRESH';\n } catch(e) { return 'FRESH'; }\n })()\n };\n } catch(e){\n return {\n spw: null,\n srv1Rate: null,\n srv2Rate: null,\n matches: 0,\n sgWinRate: null,\n retRate: null,\n quality: 'ERROR',\n warning: e.message\n };\n }\n}\n\n/**\n * Rea"
python# Find tourLabel in MATCH_PREVIEW segment around earlier snippet m=re.search(r'function MATCH_PREVIEW[\s\S]{0,20000}?\btourLabel\b', text[441956:441956+40000]) m.group(0)[:300] if m else None "function MATCH_PREVIEW(nameA, nameB, oddsA, oddsB, serverFirst, refreshTrigger, matchInputsRange, summaryRange, oddsRange, marketTotalInput, marketFormatInput) {\n // Guard: ensures any stray 'prob' references inside MATCH_PREVIEW helpers don't throw ReferenceError\n var prob = NaN;\n\n // --- PERF G"
python# Find tourLabel in MATCH_PREVIEW segment around earlier snippet m=re.search(r'function MATCH_PREVIEW[\s\S]{0,20000}?\btourLabel\b', text[441956:441956+40000]) m.group(0)[:300] if m else None "function MATCH_PREVIEW(nameA, nameB, oddsA, oddsB, serverFirst, refreshTrigger, matchInputsRange, summaryRange, oddsRange, marketTotalInput, marketFormatInput) {\n // Guard: ensures any stray 'prob' references inside MATCH_PREVIEW helpers don't throw ReferenceError\n var prob = NaN;\n\n // --- PERF G" -1
python# Find tourLabel in MATCH_PREVIEW segment around earlier snippet m=re.search(r'function MATCH_PREVIEW[\s\S]{0,20000}?\btourLabel\b', text[441956:441956+40000]) m.group(0)[:300] if m else None "function MATCH_PREVIEW(nameA, nameB, oddsA, oddsB, serverFirst, refreshTrigger, matchInputsRange, summaryRange, oddsRange, marketTotalInput, marketFormatInput) {\n // Guard: ensures any stray 'prob' references inside MATCH_PREVIEW helpers don't throw ReferenceError\n var prob = NaN;\n\n // --- PERF G" -1 (328025, -113931)
pythonseg=text[mp_start:mp_start+80000] seg.find("tourLabel"), seg[seg.find("tourLabel")-100:seg.find("tourLabel")+120] if seg.find("tourLabel")!=-1 else "none" (5158, 'var A = names.A; var B = names.B;\n var trigger = refreshTrigger;\n\n var isWTA = false;\n var tourLabel = "ATP";\n var tourDisplay = "ATP";\n\n // --- 2b. TOUR DETECTION (early, before hold rate calculation) ---')
pythonbad_count=text.count("�") bad_count 0
pythonimport re, unicodedata non_ascii=set(ch for ch in text if ord(ch)>127) len(non_ascii), list(sorted(non_ascii))[:50] (6, ['ć', 'Đ', 'đ', '–', '—', '🎾'])
pythonpositions=[m.start() for m in re.finditer("🎾", text)] len(positions), positions[:10] (1, [482703])
pythonpos=positions[0] text[pos-200:pos+200] ' // STATS CHECK (v7.2: show raw + adjusted hold, plus data source info)\n lines.push(eChart + " Player Stats (Live):");\n // ==============================================================\n // 🎾 VISUAL SIGN: Historical Surface Output (lookup proof)\n // ==============================================================\ntry {\n var _histA = null, _histB = null;\n var _tourScope = tourCode();\n '
pythonpos=positions[0] text[pos-200:pos+200] ' // STATS CHECK (v7.2: show raw + adjusted hold, plus data source info)\n lines.push(eChart + " Player Stats (Live):");\n // ==============================================================\n // 🎾 VISUAL SIGN: Historical Surface Output (lookup proof)\n // ==============================================================\ntry {\n var _histA = null, _histB = null;\n var _tourScope = tourCode();\n ' (462597, 'var eChart = "\\uD83D\\uDCCA"; var eFire = "\\uD83D\\uDD25"; var eMoney = "\\uD83D\\uDCB0"; var eDice = "\\uD83C\\uDFB2"; var eS')
pythontext[462520:462800] ' OUTPUT GENERATION ---\n var lines = [];\n var eTrophy = "\\uD83C\\uDFC6"; var eChart = "\\uD83D\\uDCCA"; var eFire = "\\uD83D\\uDD25"; var eMoney = "\\uD83D\\uDCB0"; var eDice = "\\uD83C\\uDFB2"; var eStar = "\\u2B50"; var eWarn = "\\u26A0\\uFE0F"; var eTennis = "\\uD83C\\uDFBE"; var eTarg'
python("_clamp_" in text, "_safeDiv_" in text, "_spwForHoldDisplayFromServePts_" in text) (False, False, False)
pythonidx=patched.find("\nfunction MATCH_PREVIEW(") idx 441956
pythonpatched = patched[:idx] + "\n\n" + helpers + "\n\n" + patched[idx:] # 3) Replace Analytical Hold block within MATCH_PREVIEW. # We'll target the exact three lines as seen. old_block = """ var nkHoldA = getGameWinProb(statsA.spw || 0.62); var nkHoldB = getGameWinProb(statsB.spw || 0.62); lines.push("- Analytical Hold: " + A + " " + (nkHoldA*100).toFixed(1) + "% | " + B + " " + (nkHoldB*100).toFixed(1) + "% (Newton-Keller)");""" new_block = """ // Build display-only SPW from serve points (display-only; does NOT affect sim/picks) // Note: last5Auto() already aggregates total serve points as stats*.totalSrvWon / stats*.totalSrvAtt. // We pass totals into the (srv1*) slots; srv2* slots are zero (equivalent to using combined serve points). var spwA_disp = _spwForHoldDisplayFromServePts_( statsA.totalSrvWon, statsA.totalSrvAtt, 0, 0, tourLabel ); var spwB_disp = _spwForHoldDisplayFromServePts_( statsB.totalSrvWon, statsB.totalSrvAtt, 0, 0, tourLabel ); // Newton-Keller hold for DISPLAY ONLY var nkHoldA = getGameWinProb(spwA_disp); var nkHoldB = getGameWinProb(spwB_disp); // Optional note when sample is small (display-only) var _attA = Number(statsA.totalSrvAtt || 0); var _attB = Number(statsB.totalSrvAtt || 0); var _ssNote = ((_attA > 0 && _attA < 220) || (_attB > 0 && _attB < 220)) ? " (small sample)" : ""; lines.push("- Analytical Hold: " + A + " " + (nkHoldA*100).toFixed(1) + "% | " + B + " " + (nkHoldB*100).toFixed(1) + "% (Newton-Keller)" + _ssNote);""" if old_block not in patched: # fallback regex replacement pass patched2 = patched.replace(old_block, new_block) replaced = (patched2 != patched) replaced True
python"🎾" in patched2, len(set(ch for ch in patched2 if ord(ch)>127)), sorted(set(ch for ch in patched2 if ord(ch)>127)) (False, 5, ['ć', 'Đ', 'đ', '–', '—'])
pythonpatched_text=patched2 patched_text.count("_spwForHoldDisplayFromServePts_"), patched_text.count("var spwA_disp"), patched_text.count("- Analytical Hold:") (3, 1, 1)
pythonpatched_text.count("Newton-Keller") 6
pythondef brace_balance(s): return s.count("{"), s.count("}") orig_counts=brace_balance(orig) patch_counts=brace_balance(patched_text) orig_counts, patch_counts, (orig_counts[0]-orig_counts[1]), (patch_counts[0]-patch_counts[1]) ((2374, 2374), (2377, 2377), 0, 0)
pythonfrom pathlib import Path patched_path = Path("/mnt/data/4.0fix_patched.txt") patched_path.write_text(patched_text, encoding="utf-8") patched_path.name, patched_path.stat().st_size ('4.0fix_patched.txt', 562750)
Done — I applied your display-only Newton–Keller Analytical Hold sanitizer to your script (from your uploaded 4.0fix.txt) and also removed the one raw emoji character that can mojibake (your output already uses Unicode-escape emojis, so this cleans up the last “risky” one). (4.0fix.txt)
_clamp_, _safeDiv_, _spwForHoldDisplayFromServePts_ immediately above function MATCH_PREVIEW(...).getGameWinProb() using that sanitized SPW,< 220 serve points in the window.🎾 character in a comment (replaced with plain text) so nothing in the file depends on raw emoji encoding. All emojis printed in output remain via \u.... escapes.