Окружность, описанная около четырёхугольника ABCD, имеет радиус 2.
Диагонали AC и BD пересекаются в точке E так, что AE=EC.
Дано, что AB=sqrt(2)AE,BD=2sqrt(3).
Найдите площадь четырёхугольника ABCD. Решить не координатным методом.
Thought
Presenting a concise trigonometric-based solution in Russian
I don’t need general solving due to previous errors. I’ll keep it concise and provide a trig-based solution. The area is 23, and I'll walk through key steps like introducing angles, using chord formula, and simplifying the relations with sine functions. The response will be more intimate given the user speaks Russian.
Exploring alternate simplification methods for geometry
I'm trying to use the sine formula for ratio with cosines, but it feels a bit unnatural. Instead, I’ll look at triangle ABC with sides related to radius R=2. Using the known relationships, I'll find specific angles and work with side ratios like AB/AC=1/2 and avoid overcomplicating with sine formulas that aren't aligning well.
Using arcs method for solving geometry problem
It seems like using the arcs method makes more sense instead of the diagonal approach, considering the complexity. I'll present the solution in Russian as requested. I'll explain it step by step focusing on chord formulas, the angles, and related diagonals. This approach should work for solving the problem efficiently.
Solution breakdown
We are given the following conditions:
From BD=23, we derived that β+γ=32π and α+δ=3π.
The condition AE=EC led to a sine equation, sinαsinδ=sinβsinγ.
Using the given relation AB=2⋅AE, we arrived at the equation sin(α+β)=2sinα.
Substituting α+β=4π gave the angles as α=6π, β=12π, δ=6π, and γ=127π.
These values satisfy the condition sinαsinδ=sinβsinγ, thus completing the solution.
Thought for 8m 32s
Answer
Искомая площадь равна 23.
Разберёмся аккуратно без координат, только окружность и тригонометрия.
1. Обозначения углов и длины хорд
Пусть O — центр окружности (R=2), а
∠AOB=2α,∠BOC=2β,∠COD=2γ,∠DOA=2δ.
Тогда
α+β+γ+δ=π.
Каждая сторона — хорда окружности, значит:
AB=2Rsin∠ACB=4sinα,BC=4sinβ,CD=4sinγ,DA=4sinδ.
Диагонали:
AC=4sin(α+β),BD=4sin(β+γ),
так как, например, хорда AC соответствует центральному углу 2(α+β).
2. Условие для диагонали BD
Дано BD=23, значит
4sin(β+γ)=23⇒sin(β+γ)=23⇒β+γ=32π.
Следовательно
α+δ=π−(β+γ)=3π.(1)
3. Условие AE=EC
Из известного факта о пересечении диагоналей во вписанном четырёхугольнике: